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* .A stably stratified, two-layer fluid system with a free surface admits

resonant triads, including ones invol o e surface and two i _

waves.
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Resonant triads that couple surface and internal gravity waves are

thought to play an important role in transferring energy from wind-

generated surface waves to internal waves. Ball Vused a geometric

construction to show that the linearized dispersion relation for a two-

layer liquid system with a free upper surface and no stream velocity

-4o-tc admits resonant triads. On the basis of the required

kinematic conditions,

Ic + t2  = W1 + W2 W3()

where k. denotes the horizontal wavenumber and wj the frequency of the

j-th wave, Ball 1 claimed that the triads in question "always involve two

external [i.e., surface] waves ... and one internal wave". This claim was

supported by Phillips2 : "...the interaction of two internal waves to

generate a surface wave, does not seem to be possible". Again, his

argument was based on the impossibility of satisfying the kinematic

conditions, (1). The purpose of this note is to demonstrate that the two-

layer model admits resonant triads involving two internal waves and one

surface wave.

The linearized dispersion relation for the two fluid model is
3:

W4[l + (1 - A) tank kH tank kh] - w2 gk[tank kH + tank kh]

+ Ag 2k2 tank kH tankkh = 0, (2)

(notation in Fig. 1). If this configuration is to represent the open

ocean, we may let H . ® without practical loss. In this limit, the

dispersion relation may be factored in simple terms:
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(w' - giki) ( 2 A ~ gkank kh 0kh . (3)
1 + (1-A) tank jkh

Clearly the first factor represents the surface waves, while the second

represents the internal waves. The solution-curves of (3) are sketched

in Fig. 2.

Next we use Ball's geometric method to demonstrate the existence of

the triad in question. Choose any point (A) on the curve 01 in Fig. 2.

A curve, commencing at A, drawn congruent to 012 , intersects OS, at B

The vector commencing at B, parallel to AO, intersects 012 at C. The

points A, B, C form a resonant triad of solutions of (3). This triad

contains two internal waves, A and C , and one surface wave, B.

To make the point even more strongly, we may let h in (3),

which then reduces to

(W2 - Iki)( - Ag ) = 0. (4)

In this case, the triad in question may be given in closed form. For any

real 11,

= IL , gk1  = (2-A) n 2
l I - A ' A ( 1 _ A ) 2 '

W2 = , gk2  = (2-a) 2,, (5)

2 - A ksa(2 - A ) 2 a2

1 -A (1 A)2

i
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It is apparent that this triad satisfies both (1) and (4), and that k,

and k2 represent internal waves, while k3 represents a surface wave.

The assumption that H - - in (2) is not essential. The construction

in Fig. 2 applies equally well to the solution curves of (2). The

restriction to a two-layer system is not essential, either. Thorpe4

showed that Ball's method applies equally well to a continuously

stratified fluid, and Thorpe's discussion may be modified to show that

resonant triads involving one surface and two internal waves exist in a

continuously stratified fluid. Finally, these triads persist in the

Boussinesq limit [obtained by setting A = 0 in the coefficient of w'

in (2)], because the construction in Fig. 2 exhibits a topological

property of the equations. In this limit, (4) becomes

(W2 - glkl)(w-2 - kAgjkj) = 0, (6)

and (5) is replaced by

(2 +A 2 -2+A

W2 = Q, gk 2 = 2 02 (7)A

= 4 \gk = ( 2

2 -A 2

Thus, these triads should be considered common in a density-stratified

fluid with a free surface._.
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The physical consequences of this triad are not yet clear. The

system in question is conservative, and the frequencies in (1) are all

positive. It follows from a theorem of Hasselmann5 that in a two fluid

system, a uniform train of surface waves of small amplitude (a) is

unstable; any tiny perturbation of the internal waves will grow

(exponentially, at first) at the expense of the surface wave. The

initial growth rate, X , of the disturbance is proportional to

(W1 w2) IDlIal , where D is the interaction coefficient (which is not

calculated here). Because W2, 1 O(gA) from (3), it follows that the

growth rate is on the order of
I

X = O(!5IDIIa1). (8)

6This growth rate may be compared to that of the Benjamin-Feir instability

of short surface waves:

A -. O(la12). (9)

F )r configurations in which D = O(1) and lal - A', the instability of

the surface waves to two internal waves dominates over the Benjamin-Feir

instability. Moreover, because the surface wave in this triad tends to

be much longer than the two internal waves, this instability is viable

even for long surface waves, where the Benjamin-Feir instability is

inoperative.

On the other hand, one may show by the same reasoning that one of

the two surface waves always is unstable in any of the other triads

possible in the two-layer system. The growth rates of these instabilities
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also are proportional to the amplitude of the unstable surface wave, as

in (8). It is not clear without a detailed calculation of the interaction

coefficients which instability dominates. However, the purpose of this

note is not to assert the dynamic significance of this triad, but merely

its existence.
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Figure Captions

Figure 1: Two layer system, with notation for Eq. (2); p denotes the

density of the fluid.

Figure 2: Dispersion curves for Eq. (3), with A = 0.02, and the

geometric construction of a resonant triad involving one

surface (B) and two internal (A, C) waves.
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